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Abstract

A pulsating form of hydrodynamic instability

has recently been shown to arise during the deflagra-

tion of liquid propellants in those parameter regimes

where the pressure-dependent burning rate is char-

acterized by a negative pressure sensitivity. This

type of instability can coexist with the classical cel-

lular, or Landau, form of hydrodynamic instability,

with the occurrence of either dependent on whether

the pressure sensitivity is sufficiently large or small

in magnitude. For the inviscid problem, it has been

shown that when the burning rate is realistically al-

lowed to depend on temperature as well as pres-

sure, that sufficiently large values of the tempera-

ture sensitivity relative to the pressure sensitivity

causes the pulsating form of hydrodynamic insta-

bility to become dominant. In that regime, steady,

planar burning becomes intrinsically unstable to pul-

sating disturbances whose wavenumbers are suffi-

ciently small. In the present work, this analysis is

extended to the fully viscous case, where it is shown

that although viscosity is stabilizing for intermedi-

ate and larger wavenumber perturbations, the in-

trinsic pulsating instability for small wavenumbers
remains. Under these conditions, liquid-propellant

combustion is predicted to be characterized by large

unsteady cells along the liquid/gas interface.

Introduction

Hydrodynamic (Landau) instability in combus-
tion is typically associated with the onset of wrin-

kling of a flame surface, corresponding to the for-

mation of steady cellular structures as the stability

threshold is crossed. This type of instability was
originally described by Landau 1, and is attributed

to thermal expansion across a combustion front. Al-
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though gaseous combustion was determined to be

intrinsically unstable in Landau's analysis, it was

demonstrated that additional effects, such as gravity
and surface tension, that enter when the unburned

mixture is a liquid result in a specific stability cri-

terion. However, this analysis, along with a later

study by Levich 2 that considered viscous effects in
lieu of surface tension, assumed that the the combus-

tion front propagated normal to itself with constant

speed, whereas it is now recognized that there is a

dynamic interaction between the burning rate and
local conditions at the front.

For those problems in which pyrolysis, exother-

mic decomposition and/or combustion occurs in an

intrusive region in the vicinity of the liquid/gas in-

terface, the dynamical coupling of the burning rate
with the underlying hydrodynamics of the flow can

be achieved through an analysis of the thin com-

bustion/interface region. An alternative approach,

however, is to simply postulate a phenomenologi-

cal dependence of the local burning rate on pressure

and temperature, and to obtain results in terms of

suitably defined sensitivity parameters. Both types

of methodologies have been applied to the problem

of solid-propellant combustion, and each offers cer-
tain advantages. 3'4 In the present series of studies

on liquid-propellant combustion, s-v the latter ap-

proach has been adopted, thereby generalizing the

Landau/Levich model to allow for a coupling of the

burning rate with the local pressure and tempera-
ture fields.

Summarizing some of the results obtained from

the present model, it has been shown that when only

the pressure sensitivity of the burning rate is taken

into account, an appropriately generalized stability

criterion for cellular (Landau) instability is obtained.
Exploiting the realistic limit of small gas-to-liquid

density ratios, it is found that the stable region oc-

curs for negative values of the pressure-sensitivity
parameter, with the original Landau model being

intrinsically unstable in this limit. In particular,

the neutral stability boundary possesses a local min-

imum when it is plotted against the wavenumber



of thedisturbance,suggestingthat asthepressure-
sensitivityparameterdecreasesin magnitude,the
liquid/gasinterface/frontdevelopscellscorrespond-
ingto classicalhydrodynamicinstability.5Thismin-
imumreflectsthefact thatsurfacetensionandvis-
cosityarestabilizinginfluencesfor short-wavedis-
turbances,whereasgravityis astabilizinginfluence
forlong-waveperturbations.Asaresult, the effect of

reducing the gravitational acceleration to micrograv-

ity levels is to shift the neutral stability minimum

to smaller wavenumbers. Thus, in the micrograv-

ity regime, Landau instability becomes a long-wave
instability phenomenon, implying the appearance of

large cells along the combustion interface.

Aside from the classical cellular form of hydro-

dynamic instability, this dynamic generalization of

the Landau/Levich model also predicts the appear-
ance of a pulsating form of hydrodynamic instabil-

ity, corresponding to the onset of temporal oscilla-

tions in the location of the liquid/gas interface. This

form of hydrodynamic instability occurs for negative

values of the pressure-sensitivity parameter that are
sufficiently large in magnitude. 6 Consequently, sta-

ble, planar burning is predicted to occur in a range

of negative pressure sensitivities that lies below the

cellular boundary and above the pulsating boundary

just described. A stable range of negative pressure
sensitivities is applicable, for example, to certain

types of hydroxylammonium nitrate (HAN)-based

liquid propellants at low pressures for which non-

steady modes of combustion have been observed, s

The appearance of both pulsating and cellular forms

of hydrodynamic instability is analogous to the two

corresponding types of thermal/diffusive instabili-
ties that occur for sufficiently large and sufficiently

small Lewis numbers, respectively. 9

When the additional effect of a temperature

sensitivity in the burning rate is included in the

analysis, substantial modifications to the above sta-

bility description can occur. Specifically, it is found
that if the temperature-sensitivity parameter is suffi-

ciently large relative to the parameter corresponding

to pressure sensitivity, the pulsating hydrodynamic

stability boundary can develop a turning point (i.e.,

become C-shaped) in the (disturbance-wavenumber,

pressure-sensitivity) plane. In that case, the sta-

ble region for small wavenumbers disappears, and
liquid-propellant combustion is predicted to be in-

trinsically unstable to the nonsteady form of hydro-

dynamic instability for all sufficiently large distur-

bance wavelengths. This has been described in de-
tail in the limit of zero viscosity, 7 and the purpose

of the present work is to extend that analysis to the

fully viscous model. Viscous effects were shown to

have a substantial influence in the absence of ther-

mal sensitivity, where it turned out that the stable

region became significantly widened when viscosity

was present, and the same result will be demon-

strated when thermal effects are present. However,

the same intrinsic pulsating instability that occurs

for sufficiently large temperature sensitivities and

sufficiently small wavenumbers in the inviscid case

will be shown to be preserved even when viscosity is

included. These results lend further support to the

notion that a likely form of hydrodynamic instabil-

ity in liquid-propellant combustion is of a nonsteady,

long-wave nature, distinct from the steady, cellular

form originally predicted by Landau.

Summary of the Mathematical Model

The present model of liquid-propellant combus-

tion was described previously, 5,1° but is briefly sum-

marized here for completeness. Specifically, it is as-
sumed that the combustion front coincides with the

liquid/gas interface, where pyrolysis and/or exother-

mic decomposition occurs. Denoting the nondimen-

sional location of this downward-propagating inter-

face by x_ = @(xi, z2, t), where x3 is the vertical co-
ordinate and the adopted coordinate system is fixed

with respect to the stationary liquid at x3 = -00, we

transform to the moving coordinate system x = xl,

y = x2, z = x3-&(xl,x2,t) such that the liquid/gas

interface always lies at z = 0. Conservation of mass,

energy and momentum within each phase then gives

v.v=0, z#0, (1)

DO

Ot Ot Oz ,_ ' '

Ov Oq_ Ov
+ (v. V)v = (0,0,-Fr -t)

c_t Ot Oz (3)

t APrg

where v, 0 and p denote velocity, temperature and

pressure, respectively, Prl and Prg denote the liquid

and gas-phase Prandtl numbers, p, A and c (used be-

low) are the gas-to-liquid density, thermal diffusiv-
ity and heat-capacity ratios, and Fr -1 is the inverse

Froude number (gravitational acceleration). Other
nondimensional parameters that appear below in-

clude the liquid surface-tension coefficient 7, the gas-

to-liquid viscosity ratio p (p)_Prg = #Prt), the rate-
of-strain tensor e and the unburned-to-burned tem-

perature ratio a,.



Equations (1)- (3) are subject to a set of bound-

ary and interface conditions given by

v=0, 8=0 at z=-oo,
(4)

O=1 at z=+oo, OIz=0- =elz=o+,

a,x v_ = a,× v+, (5)

a,.(v_ - pv+) = (1 - p)S(ff2)-_t, (6)

S@ O@
a,.v_- ( )_ = A(pI==o+,el,=o),(7)

pl,=0- - p[,=0+
= a,. [pv+(a,. v+) - v_(a,, v_)

-pAPrge+. as + Prte_ • a,] (8)

+ _,.(v_ - pv+)S(¢)_ - _(-v. a,),

a,x [pv+(a,. v+) - v_(a,, v_)

v S @ 0@1+(v_-p +) ()_] (9)

----fasx(pAPrge+ • fi, - PrIe_ • fi,),

a,. (cp_volz_-0+ - VOl==0-)

= a,.[(cpv+- v_)el,=o+ a(_.pv+- v_)](lO)

+ [(I - cp)el,:o + a(l - cup)]S(@)-_T,

where a = c/(l - o'u),v:l:= vl==0±, e:l:= elz=o*,

and Eqs. (5) - (10) correspond to continuity of

the transverse velocity components (no-slip), con-

servation of (normal) mass flux, the mass burning

rate (pyrolysis) law, conservation of flux of the nor-
mal and transverse components of momentum, and

conservation of heat flux. Here, the surface fac-

tor S((I)) = (1 + (I)__ 4- ¢_)-1/2, the unit normal

fi, = ( - (I)x,-@y, 1)S((I)), and the expressions for
the gradient operator, the Laplacian and the curva-

ture in the moving coordinate system are given by

v = (o: - ¢:a,, a, - ¢,oz, o,), v _ = a,= + o,, +
(1+¢_ + ¢_)0_, - 2¢_o_, - 2¢,0_z - (_ + ¢,,)0,
and -V.fi. = (I>==(I+ ¢2) 4- ¢u:( 1 4- ¢2) _

2(I)= @_ (_=_), respectively. However, the vector v still
denotes the velocity with respect to the (xx, x2, x3)

coordinate system. Finally, we note that the nondi-

mensional mass burning rate appearing in Eq. (7) is

assumed to be functionally dependent on both the

local pressure and temperature at the liquid/gas in-

terface. By definition, A = 1 for the case of steady,

planar burning, but local perturbations in pressure

and/or temperature result in corresponding pertur-
bations in the local mass burning rate.

Since the thermal and hydrodynamic fields are

coupled only through the temperature dependence

of the mass burning rate A appearing in Eq. (7),

the strictly hydrodynamic problem for p, v and @s

can be analyzed separately when A is assumed to de-

pend on pressure only [5,6]. In the present work, we

focus on the fully coupled problem to determine how

the hydrodynamic stability boundaries are modified

when the local burning rate depends on tempera-

ture as well as pressure. Our stability results will

thus depend on two sensitivity parameters, Ap and

Ao, defined as Ap = OA/Oplo:1,p=o and Ao =

OA/O(_le=l,p=o, where e = 1 and p = 0 denote the
interface values "of temperature and pressure of the

basic solution in Eq. (11) below. Though an explicit

expression for the reaction rate A is not needed in

the present analysis, we note that since the nondi-

mensional activation energy is typically large, the

temperature sensitivity As would likely be larger in

magnitude than the pressure sensitivity Ap, a fact

that will have some bearing on the relative scalings

of these parameters that will emerge in the following

analysis.

The Basic Solution and its Linear Stability

The nontrivial basic solution of the above prob-

lem that corresponds to the special case of a steady,

planar deflagration is given by

¢o = -t p°(z) = { -Fr-lz + p-1 _ 1, z < 0' -pFr-lz, z > O,

v ° = (0,0,v°) v o = {0, z < 0, p-l_l, z>0,

eO(z)=_e', z<O
1, z>O.t,

(11)

The problem governing its linear stability may be

formulated, prior to introducing any further approx-

imations, in a standard fashion by introducing per-

turbation variables ¢(x, y, t) -- ¢(x, y, z, t) - Co(t),

u(=,y,_,t) = v(=,y,_,t) - v°(z), ((x,y,z,t) =
p(x,y,z,t) - p°(z) and O(x,y,z,t) = 0 - O°(z) -

CsdO°/dz. The stability problem obtained when

Eqs. (1) - (10) are linearized about the basic so-

lution (11) is then given in terms of these variables

by

OUl OU2 C_U3

O---x-4- -_---yy4- -_-z-z = 0 , z # O , (12)



}-bY au1 Ou+_=
p Oz

(0_ 1, _,0¢ O_ 1}Fr__O¢ b_)

Iw, (a_. o2. a_._

(13)
{11,_ oo=_-.3e"

pJ&+_ t o }
(14)

+ + + z<Op_ __ _ Oz=) ' '

u=O, 0=0 at z=-c_,
(15)

0=0 at z=+oc, O[z=o+-O[z=o- =¢s,

',_l,=o--,,,[,=o+= (p-' - 1)¢=,
(16)_,_1,=o--,,_t,=o+=(p-' -_)¢,,,

'_31,=o-- pu3[,=o. = (1 - p)¢,,
(17)

u3[==o-- Ct = Ap(;h=o++ AeOl,,=o+,

_l,=o-- CL,=o+= 2("_1,=o+- "_l,=o-)
( Oua [ Ou3 \

+ 2Prl k"_-z I==o- - P'_-z ,=o+)
(18)

- 2(1 - p)¢t - 7 (¢== + Cv,),

(oul I ou_ )
#Prtk Oz [z=o+ + Ox z=O+]

(19)
(o_,,I o,,_ ,_

-Prtkoz I==o- + Oz ==o-) =0,

,_ [ OU2 I OU3

+ 1=o+)
(2o)

- Pri z=o- + Oy z=O- / =0'

O01 O0
_z}z=o+ _[ _ +cp_, - a=_-°-- cel,=o+ 0]==o-

(21)

= -u3[==o_ + ¢_,

where Eqs. (16) and (17) have been used to simplify

Eqs. (lS) - (21).

Nontrivial harmonic solutions for ¢, u and ¢,

proportional to e iw_+iktx+ik2y, that satisfy Eqs. (12)

- (14) and the boundary/boundedness conditions at

z = 4-00 are given by ¢ = e i_t+ik_=+_k2v and

= eiwt+iktz+ik_Y I blekZ -- Fr-l_ z < 0
b2e -kz-pFr -I, z>O,%

(22)
1$1 -=- eiWt+iktx+ik2lt

f b3eaz - ikt(iw + k)-lbxe kz, z < 0 (23)
I

bae "_ ikl(iwp- k)-lb2e -kz, z > O,

?..I,2 = eiwt+iklx+ik2Y

f bbe qz - ik2(iw + k)-lble kz, z < 0 (24)
a

b6e r= ik2(iwp- k)-Ib2e -kz, z > O,

U 3 = elWt+iklx+ik2y

bTeqz - k(iw + k)-lble kz, z < 0 (25)" bse rz + k(iwp- k)-lb2e -kz, z > O,

0 = e iwt+iklx+ik2y

( bge _ - [iw + k 2 - q(q+ l)]-Xb7e(q+U"• + k[(iw) 2 - k 2]-lble(k+l)z, z < 0

[ brae sz, z > O.

, (2_)
Here, k = (k_ + k2_)'/2 is the overall disturbance

wavenumber and the quantities p, q, r, s are de-

fined respectfully as 2p = 1 + [1 + 4(iw + k2)] '/2,

2Prl q = 1 + [1 + 4Pri(iw + Prl k2)] '/2, 2#Prir =

1 - [1 + 4pPr,(iwp + IzPrt k2)] _/_ and 2pAs = 1 -

[1 + 4p=A(iw + kk2)] _/2. Substituting this solution

into the interface conditions (16) - (21) and using
Eq. (12) for z < 0 yields eleven conditions for the

ten coefficients bz - bzo and the complex frequency

(dispersion relation) iw(k). In particular, these con-
ditions are given by

ikib3 +ik2b5 + qbT=iklb4+ik2b6+rbs=O, (27)

ika k,b_ _ b4 + ik_
b3 iw + iwp- kb2 = (p-1 _ 1)ikl,

ik2 ik2 /_b2 = (p-1 _ 1)ik2,bs iw + k bi - bn + iwp -

(281, b)

k pk kb _ = (1 - p)iw,b7 iw + f bl - pbs iwp -

k

b7 iw + k bl - A_ b2 - Ao bao = iw - pFr- XAp ,

(29a,b)
2k(kl_Pri + 1

2k2pr']_ - [1 + - P)]b2[1+_-mjo, _:_-
- 2Prt qb7 - 2(1 - p - #Pr_ r)bs

= (1 - p)(Fr -_ - 2iw) + 7k 2 ,

(30)
2iklkpPr_ _.

#Prl rb4 + _wp-_- _ _2 + iklpPrl b8
(31)

2iklkPrt
- Prl qb3 + iw + k _'_ - iklPrl b_ = O,

2ik2kt_Prl

#Prt rb_ + iwp - k b2 + ik2pPrt bs
(32)

2ik2kPrt
- Prlqbs + -_w-_ bl - ik2Prtb7 = O,



blo-bg+[i +k2-q(q+l)]-%-k[Ci )2-k2]-lb = 1,
(33)

(1-c+epAs)blo+ iw+k 2-q(q+l) +1 b7

k ]- pb 9 iw + k [ iw _ k + l bl = l + iw .

(34)

While the above problem is linear in the coef-

ficients bl - blo, which can thus be eliminated to

give a single equation for iw, the resulting disper-

sion relation is quite long and highly nonlinear. Ex-

plicit results may be obtained for certain special

cases, including the original problems considered by

Landau 1 (Ap -- Ao = Prt = # = 0) and Levich 2

(Ap = Ao = p = 7 = 0), as well as a particular

case (Ao = p = Prl = 0) of the generalized model
described above, s,ll To obtain more general results,

it is possible to exploit the smallness of certain pa-

rameters and to seek asymptotic solutions for the

neutral stability boundaries. In particular, realistic

limits to exploit include the smallness of the gas-

to-liquid density and viscosity ratios p and p, and,
in the microgravity regime, Fr -1. Pursuing this ap-

proach, tractable asymptotic results have so far been
obtained for the case s,6 Ao = 0 and for the invis-

cid problem when Ao is nonzero. _ The present work

essentially completes the asymptotic analysis of the

dispersion relation embodied in Eqs. (27) - (34) by

extending the last of these studies to the fully vis-

cous problem.

Parameter Scalings and Asymptotic

Analysis of the Dispersion Relation

Focusing on the realistic regime p << 1 (typical

values are on the order of 10 -3 or 10-4), we formally

introduce a bookkeeping parameter e << 1 and intro-

duce the reasonable scalings p = p'e, # = p'e, Prl

O(1) and either Fr -1 = g or Fr -1 = g'e, where

Fr -1 _ O(e) corresponds to the case of greatly re-

duced gravity. In this parameter regime, the appro-

priate scaling for Ap to describe the neutral stability

region is Ap = A_e [5,6], whereas the appropriate
scale that describes the main effects of thermal cou-

pling turns out to be Ao = A_e 1/4 [7]. Based on this

scaling, we note that the ratio Ao/Ap ,._ O(e -3/4) >>

1, as might be expected based on an overall Arrhe-

nius reaction-rate dependence on temperature.

Based on our previous analyses, the above scal-

ings induce a set of corresponding regimes for the

wavenumber k (and the complex frequency iw) in

the dispersion relation determined by Eqs. (27) -

(34). These first emerged in our analysis of cellular

instability using the generalized model in the limit
As = 0, but they are also relevant when one consid-

ers the pulsating form of instability and when Ao

is allowed to be nonzero.In particular, in the case

of cellular instability and zero temperature sensitiv-

ity, there are three wavenumber scales to be con-

sidered. First, there is an O(1) outer wavenumber

region where the stabilizing effects of surface ten-

sion, viscosity and gravity are all relatively weak.

Second, there is a far outer scale k _., ki/e where
surface tension and/or viscosity are strongly stabi-

lizing and gravitational effects are, to a first approx-

imation, negligible. Finally, we have an inner scale

k _ kie or k ,-_ kie 2 where gravity is the dominant

stabilizing effect (the first scale is valid for normal

gravity, the latter for the reduced gravity regime),

and where viscosity and surface-tension effects axe

absent at leading order. In each of these regimes,

the cellular stability boundary, obtained by seeking

solutions of the dispersion relation for which iw is

identically zero, is given respectively by

A*p(k) _ -p'12,

A;(,)(k, ) ,_ { p'(p*g - k,)/2k,,p*(p* g* - k_)/2k_,

A_(f) ,,_ _p*

+

Fr -1 ,.. 0(1)

Fr-I _ 0(_),

(35)

2p*p*P [1 + ki(p*7 + 2#*P + 2p*P)]

(36)
where P - Pri and R(k/) = (1 + 4#*2p2k_) '/_.
Matching these solutions to one another then leads

to the composite stability boundary

/0,2

~ -f + _2g.

2p*p*P [1 + ek(p*7 + 2p*P + 2p*P)]

4p'P(1 + ekp*P) - [1 - RCek)](p'7 + 21z'P)'
(37)

as shown in Fig. 1. Clearly, the stable region lies

below A_ = -p*/2 (negative values of Ap over cer-
tain pressure ranges are characteristic of a number of

HAN-based liquid propellants [8], with the location
of the minimum in the cellular boundary increasing

to less negative values of Ap with increasing values

of the stabilizing parameters -_*, Prl, p* and g (or

g*). Comparing the two sets of curves corresponding

to the normal and reduced gravity cases, it is clear
that the critical wavenumber for instability becomes

small in the latter regime. That is, cellular hydrody-

namic instability becomes a long-wave instability in

the limit of small gravitational acceleration. Further



discussionof this stabilityboundary,andits rela-
tionshipto theoriginalLandau/Levichpredictions,
isgivenin Ref.[5].

_] HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)

IA_. ViscousCase(e> O)

o | (zp'Fr-',O) unstable k {(ep'7)",O)

stable

Figure 1. Asymptotic representation of the cellular

hydrodynamic neutral stability boundaries. The up-

per and lower sets of curves correspond to the nor-

mal and reduced-gravity regimes, respectively (curves

drawn for the case e = .04, p* = 1.0, g = 6.0,

g" = 2.0}. The solid curves correspond to the invis-

cid limit (P = O} with nonzero surface tension (7 =

2.5). The dash-dot curves correspond to nonzero

surface tension (_, = 2.5) and liquid viscosity (P =

1.0), but zero gas-phase viscosity (#*P = 0). The

dash-dot.dot curves differ from the dash-dot curves

by the addition of gas-phase viscosity (#*P = 1.0),

and are similar to the dash-dot-dot-dot curves, where

the latter correspond to larger viscosities (P = #*P

= 2.0). The dash-dot-dot-dot-dot curves correspond

to a viscous case (P = #*P = 1.0), but with zero

surface tension.
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Figure 2. Asymptotic representation of the pulsating
hydrodynamic neutral stability boundary for the vis-

cous case (P > 0). The region between the pulsating

and cellular boundaries (the latter are shown on an

expanded scale in Fig. 1) is the stable region with

respect to hydrodynamic instability.

Considering the pulsating stability boundary in

the limit Ao = 0, which is obtained by seeking so-

lutions of the dispersion relation for which only the
real part of iw vanishes, it was determined ° that

the corresponding expressions in the inner and outer

wavenumber regions are given by

Ap ,-_ -p*, Ap ,,_ -p*(1 + 2Pk) 1/2 , (38)

respectively. In this case, it is clear that the outer

solution is, in fact, the composite solution, which lies

below the cellular boundaries and recedes to nega-

tive values of Ap that are larger in magnitude than

O(e) as k becomes large (Fig. 2). Clearly, this sta-
bility boundary is more sensitive to the stabilizing

effects of the liquid viscosity parameter P than is

the cellular boundary, having a leading-order sta-

bilizing effect for O(1) wavenumber disturbances in
this case. In the limit P --* 0, the pulsating bound-

ary collapses to the straight line A_ = -p* (i.e.,



A_ = -I in Figs. 1 and 2), but even in that limit,
there is a region of stability corresponding to val-

ues of A_ greater than -p* and less than the mini-
mum in the cellular boundary, which is greater than

-p*/2. However, if one now considers the effects of a

nonzero temperature sensitivity in the inviscid limit

P = 0, then, for Ae ,-_ O(el/4), the pulsating bound-

ary possesses a turning point such that the stability

region disappears for sufficiently small wavenumber
perturbations. 7 This is illustrated in Fig. 3, which

indicates that the pulsating boundary then frames

the stable region except along the upper branch that

asymptotes to the previous cellular boundary as k

becomes large in the outer wavenumber region. The

evolution from a stability diagram that indicates a

stable region delineated by distinct pulsating and

cellular hydrodynamic stability boundaries to the

pulsating-dominated one exhibited in Fig. 3 can
be shown to occur in the parameter regime Ao ,_

O(el/2), which, based on the estimate Ae/Ap ,,_
Oe -1/2 >30 (i.e., of the same order as a typical

nondimensional activation energy), appears to be at-
tainable for many types of liquid propellants. We

now extend the analysis that produced the fully-

developed pulsating boundary shown in Fig. 3 to

the viscous case in which both P and/_* are allowed
to be nonzero.

A;
0.2

Owing to the complexity of the fully viscous

problem, we analyze Eqs. (27) - (34) directly by

seeking appropriate expansions for the complex fre-

quency iw and the coefficients bi. This differs from

our approach in the inviscid limit where it was feasi-

ble to first eliminate the bi in order to obtain a single

implicit equation for iw alone. We first consider the

0(1) wavenumber region and, based on our previ-

ous analyses, seek an expansion for the dispersion

relation _(k) in this region in the form

iw _ e-1/2(iw0 + el/4iwx + e*/2iw2 +... ), (39)

Introducing the previously defined parameter scal-

ings, the quantities p, q, r and s defined below Eq.

(26) are expanded as

p"_p(-1/4)e-1/4+po+P(1/4)el/4+... ,

q"_q(-1/4)e-1/4+qo+... ,

rNr(1/2)el/2+r3/4e-]-rle+... _

s,,,s(1/2)(el/2)+...,

(40)

where P(-1/4) -- (iwo)11 , 2po ---[1 + iwl/(iwo)l/2],
8pCl/4) = (i 0)-1/2 [1 + + 4i 2 -

Composite Pulsating/Cellular Stability Boundary
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Figure 3. The composite pulsating/cellular hydrody-

namic stability boundary for Ao _ O(e */4) in the

limit of zero viscosity.



q(-1/l) = (iwo/P) W2' 2Pqo = [1 + iwl/(iwo/P)l/2],

?'(1/2) = 8(1/2) ---- --iw0P*, r(3/4) = -iwlp*, and r, =

-iw2p* - (#*Pk) 2. Finally, the b, are conservatively

postulated to have the expansions

bi = b_(-1) -l= ±' °iL(-314)_-314e jr -ib(-112)£-112 + "'" ,

i=1,2,8,

bi = b i(-1/2) -1/2_ + b_-l/4)_-W4 + blO) + ... ,

i = 3, 4, 5, 6,

(-1/4) -1/4 .(0) 0---(1/4)_1/4
b_=b, _ +o i e toi _ +...,

i = 7, 9, 10,

(41)

where the form of the latter expansions is again

partly motivated by our previous analyses of more

specialized cases.

Substituting these expansions into Eqs. (27) -

(34) and equating coefficients of like powers of ¢, we

obtain the leading-order conditions

+ik2bi-'/ '+ =0,
_ d-i)

ikib_ -i/2) + ik2 b(-1/2) + ,{i/2)v s = O,
(42)

b(_-_I_ = b_ I14_= o,

bl-')+b?') - 2¢') --o,
(44)

b_-') = -(k/p*)(1 + A;/p'),

where the last of these equations was obtained from

the leading-order difference of the first and second

of Eqs. (29) using the last of Eqs. (43)• From Eqs.
(43) and (44) we thus conclude that the leading-

order dispersion relation is given by

(iwo) _-= (k/p')2(2A; + p*),

which is the same result as that obtained in the in-

viscid case when A_ = 0. In particular, Eq. (45)

implies that (/w0) 2 > 0 for A; > - p*/2, which re-

covers the leading-order cellular boundary (35) for

O(1) wavenumbers, but gives no definitive informa-

tion regarding stability for A_ < -p*/2 because iwo
is purely imaginary in that region• That is, the sta-

bility of the basic solution in the latter region is

determined by the real parts of higher-order coef-

ficients in the expansion (39) for iw, although the

fact that Zm{iwo} _ 0 implies that disturbances

have a pulsating character for values of A_ below
the cellular stability boundary.

At the next order in the analysis of Eqs. (27) -

(34), we obtain a second set of conditions given by

.(-1/4)_ b (°) +qo b_-1/4) = 0ikl b1-1/4) +ik2 05 +q(-i/4)

(46)

iki b_-i/4) + ik2 b(-t/4)
(47)

Jr z.(-3/4) b(8-1)r(1/2) u s Jr r(3/4) ---- O,

=bl = =bi-' 2)=b(;,/2)
(48)

-'j') =C =0,= = Vl0 --

where the last of Eqs. (48) was deduced from the

next-order difference of Eqs. (29). Finally, from the

sum of the first of Eqs. (28) multiplied by ikl and

the second of Eqs. (28) multiplied by ik2, we con-

clude that b_-I/2) = iw0(1 - A;/p*)• However, the

fact that iwt = 0 implies the need to continue the

analysis at the next order to determine iw2. Pro-

ceeding in this fashion, we obtain from the previous

results and Eqs. (29) - (34) at this next higher order

a new set of conditions given by

b(T°)-Ckli,_o)b_ -1/2) -2i_2 = k(1-A;Ip*), b(7°) = O,
(49)

b_-_ - 2b(_-_j_ = _o(2kP- 1+ A;/p') , (go)

(43) _8_(-1/2) - _--'o/v'a*/_._0/4),_i0= iwo [1 - (A;IP') 2] , (51)

_ (k/iwo)b_-l/2) _ ,-_ _1/2dl/4)_t_o) ho - 2iw2 = 2Pk 2

b(i/4) =/_(114)_10 '

(52)
where Eq. (51) was actually obtained from the next

higher order difference of Eqs. (29), and the second

of Eqs. (49) was obtained from the sum of Eqs. (31)

multiplied by ikl and Eqs. (32) multiplied by ik2.
Equations (49) - (52) constitute a closed system for

b_-i/2), b_-1/2), _io_'(1/4)and iw2. Eliminating the first

(45) three of these in favor of the last and using the result
(45) for iwo, the dispersion relation for iw2 is finally
obtained as

iw2 = -2Pk 2 Jr k(A*_/p* - 1)

• [A;/p* + 1 + p*-i/4k-1/2A5 (2A_,/p* + 1)-z/4].

(53)
Stability in the region A_ < -p*/2 below the

cellular boundary is determined by the real part of

io_2. In that region, the principal value of the com-

plex factor in Eq. (53) may be written in the form

(A;Ip* + 1) -3/4 = [- (A;Ip* + 1)]-3/4e-3i'/4, and

thus the neutral stability condition TCe{iw2} = 0

leads to an implicit equation for the (pulsating) neu-

tral stability boundary A_(k;A_],P). In terms of



the new pressure sensitivity parameter b defined by

A; = -(p*]2)(1 ÷ b), where b represents the neg-

ative deviation, in units of p*/2 from the cellular

boundary A_ = -p*/2, this boundary is given by

_3/2(3 + _)-2 [(3 -I- b)(1 - b) + 8Pk] _ = o_I/2/k , (54)

where a = 4A_4/p *. In the limit k --* c_, it is clear

that that are two solutions of Eq. (54) given by

$ = 0 (i.e., A; = -p*/2) and b ,_ -l+2(l+2Pk) 1/_

(i.e., A_/p* ,,_ -(1 + 2Pk) W2. Thus, the pulsating
boundary is clearly multi-valued, as in the inviscid

case (Fig. 3), with one branch approaching the cel-

lular boundary and the other branch approaching

the pulsating boundary for Aa = 0 (Fig. 2) in the

limit of large k. More generally, Eq. (54) may be
rewritten as a cubic equation for the inverse relation

k(_) as

64p2k 3 + 16(3 + b)(1 - b)Pk 2

+ (3 + 6)2(1- $)2k- _u2(3 + $)25-zl2 = O,
(55)

which is clearly seen to collapse to the previous in-

viscid result 7 in the limit P _ 0. For arbitrary P,
typical plots of k(b) are shown in Figs. 4a-d, which,

when rotated -90 ° so that the k-axis is horizontal,

is readily interpreted in the context of Figs. 1 - 3,

where the lines Ap = -p*/2 and A_ = -p* corre-

spond to b = 0 and b = 1, respectively. It is clear

that these curves asymptote to the lines b = 0 and

= -1 + 2(1 + 2Pk) W2 as k --* c_, where the lat-

ter corresponds to the viscous pulsatingboundary in

the limit A_ _ 0. They cross the line b = 1, which
corresponds to the inviscid pulsating boundary in

the above limit, at k 3 = al/2i4P 2. The fact that

the pulsating boundary becomes C-shaped (in the

rotated frame of reference) for A_ > 0 implies that

steady, planar burning is intrinsically unstable for
sufficiently small wavenumbers. In addition, since

the portion within the C-shaped curve is the sta-

ble region, any crossing of the C-shaped boundary

from the stable to the unstable region corresponds

to the onset of a pulsating instability. As A_ in-
creases, the turning point of the C-shaped pulsating

boundary shifts to larger values of k. On the other

hand, as A_ becomes small, the turning point shifts

to small values of k such that this point eventually

leaves the O(1) wavenumber region for which Eq.

(54) are valid. Indeed, it turns out that the tran-

sition to separated pulsating and cellular branches

occurs as Ae decreases through O(eW2) values for

intermediate O(e 1/2) wavenumbers. 7 Thus, as A_

becomes small, the original pulsating and cellular

boundaries are recovered in the 0(1) wavenumber

regime, but as A_ becomes large, the original cel-

lular boundary lies within the unstable region for

0(1) wavenumbers and the basic solution becomes

intrinsically unstable to oscillatory disturbances.

Figures 4a-d. The pulsating hydrodynamic stability

boundaries Sor k ,_ O(1) and Ae N O(el/4) in the

general viscous case. Figures are drawn for the val-

ues p* = 1 and (a) P = .001; (b) P = .01; (c)

P = .1; (d) P = 1.0.
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Composite Neutral Stability Boundary

A composite asymptotic solution for the neu-

tral stability boundary in the regime Ae "_ O(e z/4)

is thus obtained by matching the cellular and pulsat-

ing boundaries in the far outer wavenumber regime,

where the former is given by Eq. (36) and the latter

by the second of Eqs. (38), with the appropriate so-

lution branch of Eq. (54) in the O(1) wavenumber

region. In particular, reverting back to the parame-

ter Ap, we denote the two solution branches of Eq.
(54), which correspond to the portions of Figure 4

that lie to the left and to the right of the turning-

point minimum, by A; (°'u) (k) and A_ (°'l) (k), where
the superscript "o" denotes, as before, the outer,

or O(1), wavenumber region and the superscripts

"u" and "l" denote the upper and lower (rotate Fig-

ure 4 by -90 °) portions of the double-valued pul-

sating boundary A_(k). Along the upper branch,

A*p(°'') ---0 -p*12 (i.e., I) _ O) as k ---* co, which can

be matched with Eq. (36) since A; (I) _ -p*12 as

kf _ 0. Similarly, A; (°'l) --* -p'(1 + 2Pk) t/2 (i.e.,

l) -* -I + 2(1 + 2Pk) 1/2) as k --* 0% which clearly

matches the viscous pulsating boundary given by the

second of Eqs. (38) in the far outer wavenumber re-

gion. As a result, a leading-order composite stabil-

ity boundary spanning both the outer and far outer

wavenumber regions is given by

A (k) ~

-¢/2

2p*/_*P [1 + ek(p°7 + 2/_*P + 2p'P)]
+

4#'e(l+p*Pek) - [1-R(ek)] (P*7 + 2#*P)

,A;(°'O(k) ,

(56)
for A; > A; c, where A; c denotes the turning point
calculated from Eq. (54) and the second term in the

top expression has been expressed in terms of the
outer wavenumber variable k.

The composite stability boundary is shown in

Fig. 5. Based on the above construction, the lower

branch of Eq. (56) is a pulsating boundary for all

wavenumbers, whereas the upper branch transitions

from a pulsating boundary for O(1) wavenumbers

to a cellular boundary for O(e -1) wavenumbers. In-

deed, from Eq. (45), the size of the upper region

of oscillatory instability, which is bounded below by

the upper branch of the pulsating stability boundary

and above by the region of nonoscillatory instability

beyond the outer cellular boundary A; ,',, -p*/2 for
A_ = 0, shrinks to zero as k becomes large on the

O(1) wavenumber scale. In this regime, the lack of a

stable region for sufficiently small wavenumbers thus

implies an intrinsic instability to long-wave pulsat-

ing perturbations.
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Figure 4. The composite pulsating/cellular hydrody-
namic stability boundary for Ao ", O(e 1/4) in the

general viscous case.

Conclus.ion

The present work further extends our recent for-

mal treatment of hydrodynamic instability in liquid-

propellant combustion. The analysis is based on a

generalized Landau/Levich model in which the dy-
namic motion of the liquid/gas interface, assumed

to coincide with the combustion front, realistically

possesses both a pressure and temperature sensi-

tivity. In the present work, the fully viscous case

was considered, thereby generalizing previous anal-

yses in which either the viscosity of the fluid and/or
the temperature sensitivity of the reaction rate was

neglected. As in these preceding studies, the small-

ness of the gas-to-liquid density ratio was used to de-

fine a small parameter that allowed an asymptotic
treatment of a rather complex dispersion relation.

Specifically, it was again shown that in addition to

the classical Landau, or cellular, stability bound-

ary, there exists a pulsating hydrodynamic stability

boundary as well. For sufficiently small values of the
temperature-sensitivity parameter, there is a stable

region between these two boundaries corresponding

to a range of negative pressure sensitivities for which

steady, planar burning is stable.

As the pressure sensitivity decreases in mag-

nitude, the cellular stability threshold is crossed,

leading to classical Landau instability. Surface ten-

sion, viscosity (both liquid and gas), and gravity

are all stabilizing effects with respect to this type

of instability. However, only gravity can stabilize

small-wavenumber disturbances, and thus Landau

instability becomes a long-wave instability in the

reduced-gravity limit. Alternatively, as the pressure-

sensitivity parameter increases in magnitude, the

pulsating boundary is crossed, and liquid-propellant

combustion becomes unstable to oscillatory pertur-

bations. This type of hydrodynamic instability is

more sensitive to the stabilizing effects of (liquid)

viscosity than is the cellular boundary, but the stabi-

lizing influence of viscosity does not extend to small

wavenumber disturbances, and gravity turns out not
to have a significant effect on this type of hydrody-

namic instability. Consequently, for sufficiently large

values of the temperature-sensitivity parameter, the

pulsating boundary develops a turning point and
becomes C-shaped. In this parameter regime, cor-

responding to ratios of the temperature-to-pressure

sensitivities of the order of 200 - 1000, steady, pla-

nar combustion is intrinsically unstable to nonsteady

long-wave perturbations. In that case, the pulsat-

ing form of hydrodynamic instability is predicted to

dominate, leading to large unsteady cells along the

burning liquid/gas interface.
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Nomenclature

A burning rate

Ap, Ao pressure-, temperature-sensitivity
coefficients

b_ coefficients in perturbation solution (i =

1, 2,...,10)
e rate-of-strain tensor

Fr Froude number

g inverse Froude number (gravitational ac-

celeration)

k perturbation wavenumber
fis unit normal

p pressure
P, Pr Prandtl number

q quantity defined below Eq. (26)

r quantity defined below Eq. (26)
t time variable

u perturbation velocity vector

v velocity vector

(z, y, z) moving coordinate system
7 surface-tension coefficient

e small bookkeeping parameter

perturbation pressure

A gas-to-liquid thermal diffusivity ratio

# gas-to-liquid viscosity ratio

p gas-to-liquid density ratio

¢8 perturbation in location of gas/liquid inter-
face

Cs location of gas/liquid interface

w complex perturbation frequency

Subscripts, Superscripts:

i inner wavenumber regime or integer vari-
able

f far outer wavenumber regime

l liquid

g gas

o outer wavenumber regime

• scaled quantity
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